71 research outputs found

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    Nano-surgery at the leukocyte–endothelial docking site

    Get PDF
    The endothelium has an important role in controlling the extravasation of leukocytes from blood to tissues. Endothelial permeability for leukocytes is influenced by transmembrane proteins that control inter-endothelial adhesion, as well as steps of the leukocyte transmigration process. In a cascade consisting of leukocyte rolling, adhesion, firm adhesion, and diapedesis, a new step was recently introduced, the formation of a docking structure or “transmigratory cup.” Both terms describe a structure formed by endothelial pseudopods embracing the leukocyte. It has been found associated with both para- and transcellular diapedesis. The aim of this study was to characterize the leukocyte–endothelial contact area in terms of morphology and cell mechanics to investigate how the endothelial cytoskeleton reorganizes to engulf the leukocyte. We used atomic force microscopy (AFM) to selectively remove the leukocyte and then analyze the underlying cell at this specific spot. Firmly attached leukocytes could be removed by AFM nanomanipulation. In few cases, this exposed 8–12 μm wide and 1 μm deep footprints, representing the cup-like docking structure. Some of them were located near endothelial cell junctions. The interaction area did not exhibit significant alterations neither morphologically nor mechanically as compared to the surrounding cell surface. In conclusion, the endothelial invagination is formed without a net depolymerization of f-actin, as endothelial softening at the site of adhesion does not seem to be involved. Moreover, there were no cases of phagocytotic engulfment, but instead the formation of a transmigratory channel could be observed

    Inside-Out Regulation of ICAM-1 Dynamics in TNF-α-Activated Endothelium

    Get PDF
    Background: During transendothelial migration, leukocytes use adhesion molecules, such as ICAM-1, to adhere to the endothelium. ICAM-1 is a dynamic molecule that is localized in the apical membrane of the endothelium and clusters upon binding to leukocytes. However, not much is known about the regulation of ICAM-1 clustering and whether membrane dynamics are linked to the ability of ICAM-1 to cluster and bind leukocyte integrins. Therefore, we studied the dynamics of endothelial ICAM-1 under non-clustered and clustered conditions. Principal Findings: Detailed scanning electron and fluorescent microscopy showed that the apical surface of endothelial cells constitutively forms small filopodia-like protrusions that are positive for ICAM-1 and freely move within the lateral plane of the membrane. Clustering of ICAM-1, using anti-ICAM-1 antibody-coated beads, efficiently and rapidly recruits ICAM-1. Using fluorescence recovery after photo-bleaching (FRAP), we found that clustering increased the immobile fraction of ICAM-1, compared to non-clustered ICAM-1. This shift required the intracellular portion of ICAM-1. Moreover, biochemical assays showed that ICAM-1 clustering recruited beta-actin and filamin. Cytochalasin B, which interferes with actin polymerization, delayed the clustering of ICAM-1. In addition, we could show that cytochalasin B decreased the immobile fraction of clustered ICAM-1-GFP, but had no effect on non-clustered ICAM-1. Also, the motor protein myosin-II is recruited to ICAM-1 adhesion sites and its inhibition increased the immobile fraction of both non-clustered and clustered ICAM-1. Finally, blocking Rac1 activation, the formation of lipid rafts, myosin-II activity or actin polymerization, but not Src, reduced the adhesive function of ICAM-1, tested under physiological flow conditions. Conclusions: Together, these findings indicate that ICAM-1 clustering is regulated in an inside-out fashion through the actin cytoskeleton. Overall, these data indicate that signaling events within the endothelium are required for efficient ICAM-1-mediated leukocyte adhesio

    Rickettsiae Induce Microvascular Hyperpermeability via Phosphorylation of VE-Cadherins: Evidence from Atomic Force Microscopy and Biochemical Studies

    Get PDF
    The most prominent pathophysiological effect of spotted fever group (SFG) rickettsial infection of microvascular endothelial cells (ECs) is an enhanced vascular permeability, promoting vasogenic cerebral edema and non-cardiogenic pulmonary edema, which are responsible for most of the morbidity and mortality in severe cases. To date, the cellular and molecular mechanisms by which SFG Rickettsia increase EC permeability are largely unknown. In the present study we used atomic force microscopy (AFM) to study the interactive forces between vascular endothelial (VE)-cadherin and human cerebral microvascular EC infected with R. montanensis, which is genetically similar to R. rickettsii and R. conorii, and displays a similar ability to invade cells, but is non-pathogenic and can be experimentally manipulated under Biosafety Level 2 (BSL2) conditions. We found that infected ECs show a significant decrease in VE-cadherin-EC interactions. In addition, we applied immunofluorescent staining, immunoprecipitation phosphorylation assay, and an in vitro endothelial permeability assay to study the biochemical mechanisms that may participate in the enhanced vascular permeability as an underlying pathologic alteration of SFG rickettsial infection. A major finding is that infection of R. montanensis significantly activated tyrosine phosphorylation of VE-cadherin beginning at 48 hr and reaching a peak at 72 hr p.i. In vitro permeability assay showed an enhanced microvascular permeability at 72 hr p.i. On the other hand, AFM experiments showed a dramatic reduction in VE-cadherin-EC interactive forces at 48 hr p.i. We conclude that upon infection by SFG rickettsiae, phosphorylation of VE-cadherin directly attenuates homophilic protein–protein interactions at the endothelial adherens junctions, and may lead to endothelial paracellular barrier dysfunction causing microvascular hyperpermeability. These new approaches should prove useful in characterizing the antigenically related SFG rickettsiae R. conorii and R. rickettsii in a BSL3 environment. Future studies may lead to the development of new therapeutic strategies to inhibit the VE-cadherin-associated microvascular hyperpermeability in SFG rickettsioses

    Replication of TCF4 through Association and Linkage Studies in Late-Onset Fuchs Endothelial Corneal Dystrophy

    Get PDF
    Fuchs endothelial corneal dystrophy (FECD) is a common, late-onset disorder of the corneal endothelium. Although progress has been made in understanding the genetic basis of FECD by studying large families in which the phenotype is transmitted in an autosomal dominant fashion, a recently reported genome-wide association study identified common alleles at a locus on chromosome 18 near TCF4 which confer susceptibility to FECD. Here, we report the findings of our independent validation study for TCF4 using the largest FECD dataset to date (450 FECD cases and 340 normal controls). Logistic regression with sex as a covariate was performed for three genetic models: dominant (DOM), additive (ADD), and recessive (REC). We found significant association with rs613872, the target marker reported by Baratz et al.(2010), for all three genetic models (DOM: P = 9.33×10−35; ADD: P = 7.48×10−30; REC: P = 5.27×10−6). To strengthen the association study, we also conducted a genome-wide linkage scan on 64 multiplex families, composed primarily of affected sibling pairs (ASPs), using both parametric and non-parametric two-point and multipoint analyses. The most significant linkage region localizes to chromosome 18 from 69.94cM to 85.29cM, with a peak multipoint HLOD = 2.5 at rs1145315 (75.58cM) under the DOM model, mapping 1.5 Mb proximal to rs613872. In summary, our study presents evidence to support the role of the intronic TCF4 single nucleotide polymorphism rs613872 in late-onset FECD through both association and linkage studies

    Financial Satisfaction and (in)formal Sector in a Transition Country

    Get PDF
    This paper examines the relationship between working in the formal or informal sector and self-reported individual financial satisfaction in a country in transition. It does so by allowing for individual heterogeneity in terms of perceived financial insecurity and tax morale. The empirical analysis uses a dataset for Albania, a country in transition. The method applied is the ‘self-administered questionnaire’, which combines personal contacts with written questionnaire. The results indicate that, for most individuals, working in the informal sector has negative effects on their self reported financial satisfaction. For some individuals, however, this effect is positive. The characteristic defining these two groups of individuals is their attitude towards the perceived financial insecurity related to not paying taxes. These findings have important implications, in particular for transition countries with large informal sectors. Given the involuntary participation in the informal sector in these countries, the majority of individuals working in this sector will remain financially dissatisfied as long as they have no other social safety net

    Adherens junctions connect stress fibres between adjacent endothelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endothelial cell-cell junctions maintain endothelial integrity and regulate vascular morphogenesis and homeostasis. Cell-cell junctions are usually depicted with a linear morphology along the boundaries between adjacent cells and in contact with cortical F-actin. However, in the endothelium, cell-cell junctions are highly dynamic and morphologically heterogeneous.</p> <p>Results</p> <p>We report that endothelial cell-cell junctions can attach to the ends of stress fibres instead of to cortical F-actin, forming structures that we name discontinuous adherens junctions (AJ). Discontinuous AJ are highly dynamic and are increased in response to tumour necrosis factor (TNF)-α, correlating with the appearance of stress fibres. We show that vascular endothelial (VE)-cadherin/β-catenin/α-catenin complexes in discontinuous AJ are linked to stress fibres. Moreover, discontinuous AJ connect stress fibres from adjacent cells independently of focal adhesions, of which there are very few in confluent endothelial cells, even in TNF-α-stimulated cells. RNAi-mediated knockdown of VE-cadherin, but not zonula occludens-1, reduces the linkage of stress fibres to cell-cell junctions, increases focal adhesions, and dramatically alters the distribution of these actin cables in confluent endothelial cells.</p> <p>Conclusions</p> <p>Our results indicate that stress fibres from neighbouring cells are physically connected through discontinuous AJ, and that stress fibres can be stabilized by AJ-associated multi-protein complexes distinct from focal adhesions.</p
    corecore